

A study of comparison of Network Simulator -3 and
Network Simulator -2

Rachna Chaudhary#1, Shweta Sethi*2, Rita Keshari#3, Sakshi Goel#4
#1,2,4B.Tech.(CS), IIMT Engineering College, Meerut

*3M.Tech(cs), ABES Engineering College

ABSTRACT - Network simulation is undoubtedly one of
the most prevalent evaluation methodologies in the area of
computer networks. While simulation is not the only tool
used for data networking research, it is extremely useful
because it often allows research questions and prototypes
to be explored at relatively lesser cost and time than that
required to experiment with real implementations and
networks. The network simulators allow one to model an
arbitrary computer network by specifying both the
behavior of the network nodes and the communication
channels. It provides a virtual environment for an
assortment of desirable features such as modeling a
network based on a specific criteria and analyzing its
performance under different scenarios. The newly
proposed network simulator NS-3 supports coupling,
interoperability, good memory management, debugging of
split language objects, coding in C++ and object oriented
concepts, as well as supports models supported by NS-2
and most suitable for wireless networks. The primary
purpose of this paper is to review this new simulator, as
well as find its advantages in the field of research and how
it is different from others mainly Ns2.

KEYWORDS - Ns-2, TCl, Simulation, Network Simulator,

I. INTRODUCTION

Simulation is a key component of network research
which requires debuggability, reproducibility,
parameter exploration and no dependency on existing
hardware or software [3]. Simulation is the imitation of
some real thing, state of affairs, or process. It is widely
used for the development of new communication
architectures and network protocols. Due to growth of
computer networks and complex scenarios the role of
Network simulators in research field cannot be ignored.
Simulators are useful tools when one wants to consider
time and resources, implementation of new security
solutions, performance estimation etc. Key issues in
simulation include acquisition of valid source
information about the relevant selection of key
characteristics and behaviors, the use of simplifying
approximations and assumptions within the simulation,
and fidelity and validity of the simulation outcomes. To

test any network there is a need of real system or tools
or simulators, but installing a real network is unfeasible
due to several reasons such as – high implementation
cost, expensive field tests etc. Moreover experiments
(especially wireless) can be hard to reproduce. A
typical network simulator can provide the programmer
with the abstraction of multiple threads of control and
inter-thread communication. Functions and protocols
are described either by finite-state machine, native
programming code, or a combination of the two. A
simulator typically comes with a set of predefined
modules and user-friendly GUI. Some network
simulators even provide extensive support for
visualization and animations. There are lots of good
things about simulation:

 Reproducibility
 Easier to setup, deploy, instrument
 Investigate non-existent systems
 Scalability

Most available network simulation toolkits are based
on the paradigm of discrete event-based simulation [5]
(DES). Here, the simulated network nodes trigger
events, for instance, when a packet is sent to another
node. The simulator maintains an event queue sorted by
the scheduled event execution time. The simulation
itself is performed by successively processing the
events in the queue. Section 2 will discuss about
network simulators and their roll and will compare ns-2
and ns-3. The overview of NS-3 is given in section-3
with its features and advantages. Section 4 reviews the
basic models, fundamental Objects and Code
architecture. Emulation support and the Tracing Model
are also given in this section. Conclusion and future
work is discussed next.

II. NETWORK SIMULATOR

NS or the network simulator is a discrete event

network simulator. It is popular in academia for its
extensibility (due to its open source model) and

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3085

plentiful online documentation. Ns is popularly used in
the simulation of routing and multicast protocols,
among others, and is heavily used in ad-hoc networking
research. Ns supports an array of popular network
protocols, offering simulation results for wired and
wireless networks alike. It can be also used as limited-
functionality network emulator.

NS began development in 1989 as a variant of the
REAL network simulator. By 1995, ns had gained
support from DARPA, the VINT (Virtual Inter Network
Testbed) project. at LBL, Xerox PARC, UCB, and
USC/ISI.

A. Ns 2

The ns-2 simulator [1] has long been a widely used
simulator for research and education on Internet and
other network Systems. Network simulations for ns-2
are composed of C++ code, which is used to model the
behavior of the simulation nodes, and OTcl scripts that
control the simulation and specify further aspects, for
instance the network topology.

 Problems with Ns 2

There are a lot many problems found with NS2, such
as: it has Split object model (OTcl and C++) and use of
Tcl. There is a large amount of abstraction at the
network layer and below leads to big discontinuities
when transitioning from simulation to experiment .It
has Lack of support for creating methodologically
sound simulations. Furthermore, documentation is
outdated. One of the biggest problem is that the Tracing
system is difficult to use and there is a need to parse
trace files to extract results.

B. Ns 3

The NS-3 Project started around mid 2006 which is still
under heavy development NS-3[2, 3,5 7] is a discrete-
event network simulator written in C++ with an
optional Python scripting API. It allows researchers to
study Internet protocols and large-scale systems in a
controlled environment. NS-3 is a new simulator (not
backwards-compatible with NS-2). It is a free, open
source software project organized around research
community development and maintenance. The target
user community is networking researchers and
educators [3]. NS-3 is not an extension of ns-2. It is a
new simulator, written from scratch. The project will
continue to maintain ns-2 while NS-3 is being built, and
will study transition and integration mechanisms. NS-3
is a free software simulation platform which aims at
network technology and whose source code is open.
Researchers can use it easily to develop network

technology.NS-3 contains an abundance of modules,
almost relating to all the aspects of network technology.

C. Difference between Ns 2 and Ns 3

The most visible difference between NS-3 and NS-3 is
the choice of scripting language. Ns-2 is scripted in
OTcl and results of simulations can be visualized using
the Network Animator nam[10]. It is not possible to run
a simulation in ns-2 purely from C++ (i.e., as a main ()
program without any OTcl). Moreover, some
components of ns-2 are written in C++ and others in
OTcl. In NS-3, the simulator is written entirely in C++,
with optional Python bindings. User code protocols and
scenarios also in C++ . Simulation scripts can therefore
be written in C++ or in Python. Furthermore, NS-3
generates pcap packet trace files; other utilities such as
Wireshark can be used to analyze traces as well. NS-3
does not have all of the models that ns-2 currently has,
but on the other hand, NS-3 does have new capabilities.
Some models from ns-2 have already been ported from
ns-2 to ns-3.

TABLE 1: NS2 VS. NS

 NS-2 NS-3

First Release 1996 2008

Based on

NS-1 & REAL
simulators

NS-2, GTNets, YANS

Architecture

OTcl & C++ C++ & optional Python
Scripting

Funded by

DARPA
VINT
SAMAN &
NSF
CONSER

NSF CISE & INRIA

Current
Support

Volunteers,
USC ISI &
Sourceforge

NSF, INRIA, GT, WashU
& Volunteers

Scripting

OTcl Python

Visualization

NAM

NS-3-viz, pyviz, nam,
iNSpect (all under
development)

Scalability

Sequential
Simulation

Distributed Simulation

 D. Ns-3 Project Goals[12]

The main goals for developing Ns-3 Project are as
follows :

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3086

1) To develop a preferred, open simulation environment
for networking research

2) A tool aligned with the simulation needs of modern
networking research

3) An open-source project that encourages community
contribution, peer review, and validation of the
software

III. NS-3 OVERVIEW

The brief overview of simulator is discussed in this
section with its features [4]. Ns 3 I is basically a
synthesis of:

 YANS(Yet Another Network Simulator),

 Ns-2,

 GTNetS simulators, and

 New software.

Fig 1: Software organization of NS-3[2]

 NS-3 is a discrete-event network simulator in which
the simulation core and models are implemented in
C++. NS-3 is built as a library which may be statically
or dynamically linked to a C++ main program that
defines the simulation topology and starts the simulator.
NS-3 also exports nearly its entire API to Python,
allowing Python programs to import an "ns3" module in
much the same way as in C++. The NS-3 Project started
around mid 2006 which is still under heavy
development. The official funded partners are:
University of Washington (Tom Henderson, Craig
Dowell), INRIA, Sophia Antipolis (Mathieu Lacage),

and Georgia Tech University (Atlanta) George Riley
(main author of GTNetS) and Raj Bhattacharjea[5].

A. NS-3 version release[6]:

Fig 2: An open source project building a new network simulator [4]

B. Ns-3 Features[7,8,9]

The ns-2 simulator has long been a widely used
simulator for research and education on Internet and
other network systems. However, work is progressing
on a replacement for ns-2. The features of NS3 are as
under:

1. New software core: Designed to improve
scalability, modularity, coding style, and
documentation, the core is written in C++ but
with an optional Python scripting interface
(instead of OTcl). Several C++ design patterns
such as smart pointers, templates, callbacks,
and copy-on-write are leveraged. Object
aggregation capabilities enable easier model
and packet extensions.

2. Attention to realism: The Internet nodes are
designed to be a more faithful representation
of real computers, including the support for
key interfaces such as sockets and network
devices, multiple interfaces per nodes, use of
IP addresses, and other similarities.

3. Software integration: Architecture to support
the incorporation of more open-source
networking software such as kernel protocol
stacks, routing daemons, and packet trace
analyzers, reducing the need to port or rewrite
models and tools for simulation.

Support for virtualization: Lightweight virtual machines
running over a (possibly wireless) simulation network
are an attractive combination for current research; ns-3
plans to support a few modes of such operation
including a native “process” environment where Posix-
compliant applications can be easily ported to run in
simulation space with their own private stack, and

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3087

including support for tying together virtual machines of
various types.

1. Testbed integration: Ns-3 will enable the
testbed-based researcher to experiment with
novel protocol stacks and emit/consume
network packets over real device drivers or
VLANs. The internal representation of packets
is network-byte order to facilitate serialization.

2. Attribute system: Researchers require a means
to identify and possibly reassign all values
used to configure parameters in the simulator.
Ns-3 provides an attribute system that
integrates the handling and documentation of
default and configured values.

3. Tracing architecture: Ns-3 is building a tracing
and statistics gathering framework using a
callback-based design that decouples trace
sources from trace sinks, enabling
customization of the tracing or statistics output
without rebuilding the simulation core

4. Topology: For ease of use, a number of stock
topology objects should be predefined. These
stock objects can be instantiated by a single
line of C++ code constructing the object, with
configurable arguments. Stock objects should
include trees, meshes, stars, and random
topologies of arbitrary size.

Fig 3: Overview of Ns3 features[8]

C. The Advantages of NS-3 as a simulation means:

Network simulation-3 technology has the following
characteristics [6]:

a) The entirely new simulation experiment mechanism
makes it have the characteristics of gaining high

reliability results under a network environment of high
degree of complexity.

b) Forecast function of network simulation is
unmatched by any other method.

c) Wide range of use, both optimization and expansion
of the existing networks and design of the new network
can be used, and particularly applicable for design and
optimization of Medium and large network.

d) Low initial application cost, only very few funds will
be able to provide practical network design and
operating environment for large number of students,
furthermore, the constructed network model can
continue to use so that the latter investment will still
decline continuously.

e) It is flexible, vivid and visual to use simulator for
teaching. To teach via NS-3, students can visually see
the dealing of the network protocol and understand the
effect of various environmental or other factors on the
network, can also demonstrate the advantages and
disadvantages of various strategies through comparison.

f) The simulation results can be reproduced and easily
analysis. In this platform, the experimenter can obtain
"ideal" network environment via configuring
environmental parameters and can real-time track and
record important information of key node so as to gain
the first-hand information about network performance
evaluation. Moreover, certain special circumstances can
be reproduced at any time, which is difficult to do in the
real network.

IV. NS 3 CORE CONCEPTS

A. NS 3 Basic Model[8]

Key objects in the simulator are Nodes, Packets, and
Channels. Nodes contain Applications, “stacks”, and
NetDevices.

Fig 4: NS-3 Basic Architecture [8]

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3088

B. The Fundamental Objects[5]

1. Node: the motherboard of a computer with RAM,
CPU, and, IO interfaces.In NS-3 the basic computing
device abstraction is called the node. This abstraction is
represented in C++ by the class Node. The Node class
provides methods for managing the representations of
computing devices in simulations.

Fig 5: High-level Node Architecture [7]

2. Application: a packet generator and consumer which
can run on a Node and talk to a set of network stacks. In
NS-3 the basic abstraction for a user program that
generates some activity to be simulated is the
application. This abstraction is represented in C++ by
the class Application. The Application class provides
methods for managing the representations of our
version of user-level applications in simulations. For
example, some specializations of class Application
called “UdpEchoClientApplication “&
“UdpEchoServer Application”. These applications
compose a client/server application set used to generate
and echo simulated network packets.

3. NetDevice: a network card which can be plugged in
an IO interface of a Node. In NS-3 the net device
abstraction covers both the software driver and the
simulated hardware. A net device is “installed” in a
Node in order to enable the Node to communicate with
other Nodes in the simulation via Channels. Just as in a
real computer, a Node may be connected to more than
one Channel via multiple NetDevices. The net device
abstraction is represented in C++ by the class
NetDevice. The NetDevice class provides methods for
managing connections to Node and Channel objects.
NetDevices are strongly bound to Channels of a
matching type.

4. Channel: a physical connector between a set of
NetDevice Objects. In the simulated world of NS-3, one
connects a Node to an object representing a
communication channel. Here the basic communication
subnetwork abstraction is called the channel and is
represented in C++ by the class Channel. The Channel

class provides methods for managing communication
subnetwork objects and connecting nodes to them.

Fig 6 NetDevices connected to a channel [9]

5. Packet: each network packet contains a byte buffer, a
list of tags, and metadata

– buffer: bit-by-bit (serialized) representation of
headers and trailers

– tags: set of arbitrary, user-provided data structures
(e.g., per-packet cross-layer messages, or flow
identifiers)

–metadata: describes types of headers and trailers that
have been serialized.

6. Socket: the interface between an application and a
network stack. Ns-3 provides two types of sockets
APIs, and it is important to understand the differences
between them. The first is a native ns-3 API, while the
second uses the services of the native API to provide a
POSIX-like API as part of an overall application
process.

7. Typical containers and helpers: There are different
container and helper classes in ns-3. NodeContainer,
NetDeviceContainer, Ipv4AddressContainer are some
of the container classes and InternetStackHelper,
WifiHelper, MobilityHelper, OlsrHelper are some of
the helper classes in ns3.

C. Ns-3 Code Architecture

NS-3 code is divided into different parts. Here we start
with topology definition and then we define models to
use, after that we configure over model by giving them
some addresses and setting other parameters, and
finally we executed the code. The output which is
generated in trace format will be analyzed with some
tools like Wireshark. The procedure of code creation is
shown in the fig. :

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3089

Fig 7 The NS-3 source code

D. The WAF Build System[4]

The build system used on the ns-3 project is Waf. It is
one of the new generation of Python-based build
systems.Ns-3 uses the waf build system i.e., instead of
“./configure; make” ,” ./waf” is used .

 Waf is a Python-based framework for configuring,
compiling and installing applications. It is a
replacement for other tools such as Autotools, Scons,
CMake or Ant.

Example[6]:

configure -> ./waf -d [optimized|debug] configure

make -> ./waf

make test -> ./waf check (run unit tests)

Programs can run through a special waf shell; e.g.

./waf --run simple-point-to-point

./waf—shell

E. Emulation support in Ns 3[5]

Ns-3 has been designed for integration into testbed and
virtual machine environments. This need has been
addressed by providing two kinds of net devices. The
first kind, which is called an Emu NetDevice, allows
ns-3 simulations to send data on a “real” network. The
second kind, called a Tap NetDevice allows a “real”
host to participate in an ns-3 simulation as if it were one
of the simulated nodes. An ns-3 simulation may be
constructed with any combination of simulated, Emu,
or Tap devices.

Real-Time Scheduler[5]

Ns-3 has been designed for integration into testbed and
virtual machine environments. To integrate with real
network stacks and emit/consume packets, a real-time
scheduler is needed to try to lock the simulation clock
with the hardware clock. A new component is the Real-

time scheduler. The purpose of the Real-time scheduler
is to cause the progression of the simulation clock to
occur synchronously with respect to some external time
base. Without the presence of an external time base
(wall clock), simulation time jumps instantly from one
simulated time to the next.

F. Ns-3 Models

The simulators must be updated for the rapid growth in
wireless networking, including the many variants of
IEEE 802.11 networking, emerging IEEE standards
such as WiMax (802.16), and cellular data services
(GPRS, CDMA). Table 2 summarizes the models used
in the current ns-2, as well as models planned for ns-3.
Many of the planned models may already exist in some
form as contributed code; for a new model to be
incorporated into the main branch of ns-3, it will need
to be validated, conform as appropriate to the coding
style, be licensed in a compatible way, and be
maintained going forward. Table 3 lists the Models
built so far for ns3 project.

TABLE 2: MODELS PLANNED FOR NS-3 PROJECT.[12]

 Existing core ns-2
capability

Planned additions
for ns-3

Application
Layer

ping, vat, telnet, FTP,
multicast FTP, HTTP,
probabilistic and trace-
driven traffic
generators, webcache

Sockets-like API
(to allow
porting of existing
applications to ns
environment), peer-
to-peer (e.g.
BitTorrent)

Transport
Layer

TCP (many variants),
UDP, SCTP, XCP,
TFRC,
RAP, RTP
Multicast: PGM,
SRM, RLM, PLM

TCP stack
emulation (Linux,
BSD), DCCP,
additional high-
speed TCP variants

Network
Layer

Unicast: IP, Mobile IP,
generic dist. vector and
link state, IPinIP,
source routing,
Nixvector ,Multicast:
SRM, generic
centralized, MANET:
AODV, DSR, DSDV,
TORA, IMEP

full IPv4 support,
full IPv6 support,
NAT
XORP/Click
Routing support:
BGP, OSPF, RIP,
IS-IS, PIM-SM,
IGMP/MLD

Link Layer Queueing: Diffserv,
DropTail, RED, RIO,
WFQ SRR, Semantic
Packet Queue, REM,
Priority, VQ ping, vat,
telnet, FTP, multicast
FTP, HTTP,
probabilistic and trace-
driven traffic
generators, webcache,

new 802.11 model,
802.11 variants
(mesh,
QoS), 802.16
(WiMax), TDMA,
CDMA, GPRS

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3090

ARP, HDLC, GAF,
satellite Aloha

Physical
Layer

TwoWay, Shadowing,
OmniAntennas,
EnergyModel, Satellite
Repeater

IEEE 802 physical
layers, Rayleigh
and Rician
fading channels,
GSM

G. Tracing Model in NS 3[5,8,10]

The ns-3 tracing system is built on the concepts of
independent tracing sources and tracing sinks; along
with a uniform mechanism for connecting sources to
sinks. The Ns3 Simulator provides a set of pre-
configured trace sources. Users may edit the core to add
their own trace sources and sinks. Users provide trace
sinks and attach to the trace source. Multiple trace
sources can connect to a trace sink.

Fig 8:The NS-3 tracing model[10]

Trace sources are entities that can signal events that
happen in a simulation and provide access to interesting
underlying data. For example, a trace source could
indicate when a packet is received by a net device and
provide access to the packet contents for interested
trace sinks. Trace sources are not useful by themselves;
they must be connected to other pieces of code that
actually do something useful with the information
provided by the source. The entities that consume trace
information are called trace sinks. Trace sources are
generators of events and trace sinks are consumers.

Figure 9: The Configurable Trace Sinks [4,5]

Multiple levels of tracing [5]

NS-3 provides multiple tracing levels- High, Mid and
Low

• High-level: use a helper to hook a predefined trace
sink to a trace source and generate simple tracing
output (ascii, pcap). Use built-in trace sources and sinks
and hook a trace file to them

• Mid-level: hook a special trace sink to an existing
trace source to generate ad hoc tracing. Customize trace
source/sink behavior using the tracing namespace.

• Low-level: add a new trace source and connect it to a
special trace sink. Add trace sources to the tracing
namespace or expose trace source explicitly.

V. FUTURE WORK

There are so many challenges faced by simulator field.
Not a single simulator satisfies current user’s need.
There are so many researches, comparisons and surveys
are needed before designing any simulator. Here we
have compared two simulators which are open source,
where ns-3 is in development phase and needed more
support from its users and researchers. Ns-3 overcomes
certain problems but there is need of some
improvement like, network animator tool for wireless
scenarios, user friendliness and ease of use as well as
good tutorial and wider community support, so that a
naive user can easily get comfortable with it. And most
important that before release the stable version it should
be well tested, so that it is free of any bugs and errors.

VI. CONCLUSION

There are many simulators like Opnet, QualNet, but
because of terms of use and high cost for industrial
partners or publicly-funded research these cannot get
education licenses. Despite ns-2’s popularity, there is a
critical need for a new project to perform core
refactoring, integration, software maintenance, and
extension of the simulator.
Despite all these NS-3 is an active open-source project
and open-source development model, several simulator
features designed to aid current Internet research,
community-based development and maintenance
model, trying to avoid some problems with ns-2, such
as interoperability and coupling between models, lack
of memory management, debugging of split language
objects.
An emerging question now-a-days is to still use Ns-2 or
move to ns-3. The answer is that it depends [9]. NS-3
does not have all of the models that NS-2 currently has,

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3091

on the other hand, NS-3 does have new capabilities
(such as handling multiple interfaces on nodes
correctly, use of IP addressing and more alignment with
Internet protocols and designs, more detailed 802.11
models etc). Some of the Ns-2 models can usually be
ported to Ns-3.

REFERENCES

[1.] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology,

2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-
Verlag, 1998.

[2.] J. Breckling, Ed., The Analysis of Directional Time Series:
Applications to Wind Speed and Direction, ser. Lecture Notes in
Statistics. Berlin, Germany: Springer, 1989, vol. 61.

[3.] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel
ultrathin elevated channel low-temperature poly-Si TFT,” IEEE
Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.

[4.] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin,
“High resolution fiber distributed measurements with coherent
OFDR,” in Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

[5.] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed
digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

[6.] (2002) The IEEE website. [Online]. Available:
http://www.ieee.org/

[7.] M. Shell. (2002) IEEEtran homepage on CTAN. [Online].
Available: http://www.ctan.org/tex-
archive/macros/latex/contrib/supported/IEEEtran/

[8.] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.

[9.] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico,
Switzerland.

[10.] A. Karnik, “Performance of TCP congestion control with rate
feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis,
Indian Institute of Science, Bangalore, India, Jan. 1999.

[11.] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of
TCP Reno congestion avoidance and control,” Univ. of
Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.

[12.] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification, IEEE Std. 802.11, 1997.

Rachna Chaudhary et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3085 - 3092

3092

